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Abstract
A century after the Spanish Flu the COVID-19 pandemic has re-ignited
scholarly interest in socioeconomic and occupational differences inmor-
tality in the earlier pandemic. Themagnitude of these differences,whether
they were context-specific, and the underlying pathways tying together
increased mortality and occupations remain unclear. In this paper, we
explore the relation betweenoccupational characteristics and excessmor-
tality during the pandemic in the Netherlands. Our aim is to disentan-
gle social standing and conditions for viral transmission by creating a
new occupational coding for exposure to disease at work. We use a data
set based on death certificates to calculate excess mortality rates by age
group, sex, and occupational group. UsingOLS regressionmodels, we es-
timate whether social position, regular interaction in the workplace, and
working in an enclosed space affected excess mortality in the Nether-
lands in the autumn of 1918. We find that people with occupations that
featured social contact had higher mortality in this period. However, a
strong socio-economic gradient to excess mortality also existed, even af-
ter accounting for exposure in the workplace.

Keywords: excessmortality, 1918-9 influenza pandemic, Spanish flu, socioe-
conomic health inequality, occupational health risk

JEL Codes: N34, I14.
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• We explore the socio-economic gradient in excess mortality during the
Spanish Flu.

• We develop a new measure for occupational risk of exposure based on
whether occupations involve frequent social contact and on whether
work is conducted in indoor environments.

• There was a strong socio-economic gradient to excess mortality during
the Spanish Influenza pandemic .

• While we find some evidence that occupational exposure was associated
with higher mortality, the status and skill components of occupations
had a far stronger effect, suggesting that other aspects of social classwere
more important predictors of excess mortality. For instance, exposure at
home due to crowding or poor existing health.
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1 Introduction
In 1918-1919, the Spanish Flu took the lives of an estimated 50-100 million peo-
ple worldwide (Johnson and Mueller 2002). In the Netherlands alone, over
41.000 persons died, ofwhich about 30.000 perished during the autumnwave of
1918 (CBS 1918; Quanjer 1921). At the time, it was thought that social differences
in mortality were relatively small, both in the Netherlands and abroad. For ex-
ample, the Dutch Health Council reported that there were notable differences
in mortality between age groups and regions, but found no reason to conclude
that occupation or wealth affectedmortality (Quanjer 1921). In recent decades,
however, evidence has grown that there existed a socioeconomic gradient in
mortality to the Spanish flu (Mamelund 2006). Yet, uncertainty remains, and
themechanisms that linked together socioeconomic factors andmortality risk
remain unclear. In this paper, we use newmicro-level data containing occupa-
tions and dates of death for the provinces of Gelderland, Overijssel, Zeeland,
Drenthe, and Zuid-Holland in the Netherlands to further establish whether
and how mortality risk to the Spanish Flu was linked to socioeconomic and
occupational characteristics.

Recent studies have linked the socioeconomic gradient in mortality rates
during the 1918-19 pandemic to a number of pathways. First, crowding inhomes
among the poormay lead to new infections in the same household (Mamelund
2006). Second, existing health conditionsmay have exacerbated outcomes after
infection with the Spanish flu, and some of these health conditions had an es-
tablished underlying socioeconomic dimension such as tuberculosis (Janssens
andVanDongen 2018;Mamelund andDimka 2019). Third, illiteracywas linked
to increased infection rates and worse outcomes after infection, possibly due
to reduced access to medical care and lower awareness and following of public
health guidelines during the pandemic (Grantz et al. 2016). Fourth, access to
health care in general may have been limited for disadvantaged social groups,
as was for example found for black and coloured residents in South Africa dur-
ing the Spanish Flu (Fourie and Jayes 2021). Fifth, Bengtsson, Dribe, and Eriks-
son (2018) suggested that differences in the degree to which people had inter-
personal interactions in their daily lives may have contributed to the social
gradient in pandemic mortality.

In this work, we show that a social gradient existed in Spanish Flu mor-
tality in the Netherlands, and analyse socioeconomic and occupational fac-
tors which may have contributed to risk of infection with the Spanish Flu and
risk of lethal outcomes. Particularly, we are interested in the social gradient in
Spanish Flu mortality while taking into account occupation-related risk of in-
fection. Such a social gradient may point to the relevance of resources and pre-
existing health differences in shaping survival during the pandemic, whereas
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a relationship with occupational characteristics may point towards the role of
infection risk in the workplace.

Our case is the Spanish Flu in the Netherlands, the history of which has
largely remained unwritten (for exceptions, see De Melker 2005; Gooyer 1968;
Mourits et al. 2021; Quanjer 1921; Vugs 2020). We focus on the second wave of
the Spanish Flu, in autumn 1918, whichwas by far themost deadly phase of the
pandemic. By using occupations registered on death certificates, we can mea-
sure socioeconomic status, whether work led to frequent social contact and
whether it took place in enclosed spaces. With this new occupational classifi-
cation, we establish whether people worked in conditions related to increased
likelihood of viral transmission, and test whether these characteristics account
for the social gradient in Spanish Flu mortality in the Netherlands.

2 Theory and literature
2.1 Historical background
The 1918 influenza pandemic has been described as “the mother of all pan-
demics” (Taubenberger and Morens 2006). After a mild summer wave in 1918,
a deadly second wave took hold during the final months of the First World
War. Between September and December 1918, the pandemic took more lives
than the preceding four years of warfare. The flu was notorious for its lethal-
ity, but especially feared as it heavily affected adults between ages 20-40 who
are normally least affected by infectious diseases. Especially young men and
pregnant womenwere affected, and among pregnant women the risk of a still-
birth was elevated. The infected initially showed regular flu symptoms, which
could quickly develop into pneumonia. Death often followed within days. The
sheer horror is perhaps best described in the memoirs of the surgeon general
of the US army Vaughan: “I see hundreds of young, stalwart men in the uni-
form of their country […] placed on the cots until every bed is full and yet oth-
ers crowded in. The faces soon wear a bluish cast; a cough brings up the blood
stained sputum. In themorning the dead bodies are stacked about themorgue”
(Kolata 2001; Vaughan 1926).

In the 20th century, the Spanish Flu was mostly perceived as a socially
neutral disease that affected both the poor and the rich. Immediately after the
outbreak, many doctors and scientists maintained that there was no socioe-
conomic gradient in who was affected (Bengtsson, Dribe, and Eriksson 2018;
Quanjer 1921). For the Netherlands, the Dutch Health Council (Quanjer 1921)
wrote that for influenza-related mortality: “One cannot conclude that there is
any distinction, neither by occupation, nor between the more and less afflu-
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ent.” [“Men kan daaruit niet tot eenige voorkeur, noch voor beroep, noch voor
meerdere of minder gegoedheid besluiten”, p. 24]. The idea of the Spanish flu
as a socially neutral disease persisted for the remainder of the 20th century.
Doctors and scholars thought that the influenza virus infected and killed all
classes equally because the disease was so highly transmissible (Mamelund,
Shelley-Egan, and Rogeberg 2019).

2.2 Social differences in early 20th-century mortality
The image of Spanish Influenza as a socially neutral disease has changed in
the past decades. Statistical evidence has since then shown that mortality to
the Spanish Flu was higher in poorer countries (Johnson and Mueller 2002;
Mamelund, Shelley-Egan, and Rogeberg 2019), even though there are recent
studies arguing that Spanish Influenza was unrelated to pre-pandemic eco-
nomic variables (Brainerd and Siegler 2003; Crosby 2003). Furthermore, inmore
developed countries mortality among the poor was higher, even though there
was no perfect social gradient in mortality (Bengtsson, Dribe, and Eriksson
2018; Mamelund 2006). This disadvantage of the lower classes was especially
notable among men (Bengtsson, Dribe, and Eriksson 2018).

The discussion about the role of socioeconomic status during the Spanish
flu pandemic links up to a larger debate on the origins of socioeconomic dif-
ferences in mortality. Across Europe, the social gradient in health was grow-
ing in the first half of the 20th century (Bengtsson and Van Poppel 2011). In
industrialized and urbanized England, survival differences by socioeconomic
groupwere already present around 1900 (Antonovsky 1967; Razzell and Spence
2006). In some regions, such as Southern Sweden, a health gradient by social
class emerged relatively late (Debiasi 2020). In the Netherlands in 1918, mortal-
ity differences after age 50 were only to a very limited extent affected by social
class (Mourits 2019), but in younger age groups, whichwere especially affected
by the Spanish Flu, there existed a social gradient in health from the end of the
19th century. Van Poppel, Jennissen, and Mandemakers (2009) found that be-
tween ages c. 35–55, the elite in the Netherlands had a survival advantage over
farmers and the middle class, whereas the working class had a survival disad-
vantage. Both existing differences in health as well as other social class char-
acteristics related to knowledge and skills, income, and occupational charac-
teristics may have played a pivotal role in excess mortality during the Spanish
Influenza pandemic .

According to the fundamental cause theory (Link and Phelan 1995), a so-
cioeconomic gradient in health persists even when the disease environment
changes, as socioeconomic resources are connected to health advantages re-
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gardless what the dominant diseases and causes of death are. However, the
specific advantages linked to socioeconomic resources are dependent on the
local context (Clouston et al. 2016). For diseases that are not well understood
or cannot be treated effectively, such as the Spanish Influenza or COVID-19,
socioeconomic differences in disease burden ormortality are still expected. For
example, resources can help people isolate from sick relatives or co-workers,
improve their access to information and understanding of the appropriate be-
haviour to avoid exposure, and ease access to health care. These factors can
mitigate health risks related to infectious disease, regardless what the domi-
nant diseases are.

Recent studies have provided more evidence for socioeconomic contrasts
in Spanish Influenza mortality. Herring and Korol (2012) show that the poorer
neighbourhoods of Hamilton, Ontario had significantly higher influenzamor-
tality rates than the richer neighbourhoods. Tuckel et al. (2006) and Fanning
(2010) found that immigrant groups from Italy and Eastern Europe in Hart-
ford, Connecticut and Norwood, Massachusetts, who often had low socioeco-
nomic status, were harder hit by the Spanish Influenza pandemic than non-
immigrants. Similarly, Clay, Lewis, and Severnini (2018) find that the share of
foreign-born immigrants and pre-pandemic typhoid rates predict higher all-
cause mortality during the pandemic.

Among the factors that may have contributed to higher risk among lower
socioeconomic status groups figures risk of exposure prominently. 1 Socioeco-
nomic status is and was closely related to the degree and intensity of social
contact, and households living in crowded conditions may have had a larger
likelihood of exposure to the Spanish flu, especially in urban slums. Specific
factors for socioeconomic differences in Spanish Influenza mortality include
hygiene and crowded housing, implying that the sick could not be cared for
in a separate room. Such living conditions were also related to existing health
before the arrival of the pandemic. Tuberculosis in particular may have been a
risk factor, as it may have contributed to the likelihood of a secondary infection
with bacterial pneumonia as well as reduced access to health care (Grantz et
al. 2016; Mamelund 2006). Not surprisingly, then, the working class and those
in small housing had higher death rates in Oslo, Norway (Mamelund 2006).

1There are also studies that focus on vulnerability to infection. One way through which
vulnerability could lead to higher mortality during the Spanish Influenza was through air
pollution, to which the poor were more exposed. Clay, Lewis, and Severnini (2018) show that
pollution due to coal-fired electricity generation worsened the impact of Spanish Influenza in
US cities, as the air pollution probably made lungs more susceptible to infection. Similarly,
Brundage and Shanks (2008) argue that not the virulence of Spanish flu, but the likelihood of
secondary infections played a core role in explaining its high death rates and age profile of the
deceased as well as differences between occupational groups.

6



2.3 Occupational exposure to the Spanish flu
Exposure to disease does not only occur at home but also at the workplace.
For Chicago it was found that unemployment rates were related to decreased
mortality rates and transmission, indicating that social contact and not poverty
itself could have been a key factor in mortality to the Spanish flu (Grantz et al.
2016). From the early 20th century, working conditions in factories were rec-
ognized as a general risk factor for transmission of infectious diseases (Van
DerWoud 2010). In 1898,Dutch socialist politicianDomelaNieuwenhuis (1898)
wrote about the poor hygiene, and exposure to toxins, dust, and small particles
among the working poor. By 1917, critique of labour conditions had become
more widely accepted. Statistics Netherlands reported that working men aged
35-54 working outdoors or near furnaces had lower all-cause and tb-related
mortality than those who were subjected to organic dust from tobacco, flower,
and textiles, who worked with chemicals and toxins, or – even more detri-
mental – were exposed to grinding dust from glass, metal, porcelain, or stone
(CBS 1917). For the same period in Sweden, reports by healthcare professionals
addressed how poor air quality and unhygienic conditions in factories made
workers more prone to tuberculosis (Sundin and Willner 2007).

Bengtsson, Dribe, and Eriksson (2018) provide evidence that the ability to
maintain distance from others (now commonly known as ”social distancing”)
affected mortality rates favourably. In southern Sweden, farmers were least af-
fected by the Spanish flu, and low-skilled and unskilled workersmost strongly.
Although this points towards the importance of solitary work, it should be
noted that the protective effect of farming was only found for men, and that
white collar workers had no mortality advantage compared to the working
class. To understand whether social contact affected Spanish Influenza mor-
tality, social contact at the workplace needs to be measured in more detail.
Differences in mortality by social class may have been directly affected by job
characteristics and working conditions that are not fully captured by social
class schemes (Debiasi 2020). Recent studies have highlighted substantial het-
erogeneity in mortality rates within social classes but between occupational
groups (Debiasi 2020). The decades before 1918 were dominated by infectious
disease mortality, and occupational differences in mortality may have been,
at least partly, related to exposure to infectious disease. For example, among
white collar men in Sweden, especially among health professionals, there was
amortality disadvantage, but not among religious professionals. It is contested
whether the clergy may have had a better lifestyle than the general popula-
tion (Debiasi 2020), as Bavarian monks had no survival advantage over non-
cloistered men before the 1950s (Luy 2003). More likely, the difference in mor-
tality rates between doctors and religious professionals can be explained by
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exposure to infectious disease due to the nature of their occupation.
In this paper, we take an in-depth look at occupational characteristics and

mortality during the Spanish Influenza pandemic . Instead of including spe-
cific occupations as has been done in earlier studies to all-cause and infec-
tious disease mortality, we address broad categories of occupations defined by
occupational risk factors. We supplement existing coding systems for occupa-
tional skill and status with a coding for occupational risk of exposure to infec-
tious disease. Specifically, we look into the degree of social contact at work and
whetherworkersworked in indoor environments, at the time often in cramped
and poorly ventilated conditions with workers working closely together, con-
ditions under which viral transmission tends to be higher than outdoors.

3 Methods and data
3.1 Death certificates and the civil registry
Weuse death certificates from theDutch civil registry for the years 1910-18. The
Dutch civil registry was introduced in 1811 and provided legal proof of birth,
marriage, and death. By the turn of the twentieth century the procedure was
well-established. For everyone who died in the Netherlands a death certificate
was issued, in duplicate so that safekeeping was ensured (Mourits, Van Dijk,
and Mandemakers 2020; Vulsma 1988). Digitisation of these certificates has
been ongoing since the 1990s by local and provincial archives. Death records
list the date of death, full name, age, sex, place of residence, and the occupation
of the deceased.2

These individual-level records allow us to analyse mortality during the
Spanish Influenza pandemic in more detail than previously. Other historical
sources, such as municipal reports or national health reports, give only aggre-
gated deaths per year and do not split out observations by age, sex, or occu-
pation (see for example, the Historical Database Dutch Municipalities (Boon-
stra 2020) or (CBS 1918)). The aggregated number of deaths per municipality
is available for age groups, but without information on occupation or other
indicators of socioeconomic status. Some records of individual-level causes of
death data survive, but they are fragmented and scarce. Death certificates are
thus the only remaining source that combines key individual-level character-
istics with sufficient nationwide coverage to generate meaningful insights into

2We used the digitised certificates from https://www.openarch.nl/api/docs/. Data
processing scripts are available at https://github.com/CLARIAH/wp4-civreg/tree/
master/deathsv1, and the dataset at https://datasets.iisg.amsterdam/dataset.
xhtml?persistentId=hdl:10622/PCAEGG.
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mortality patterns along socioeconomic lines.
Death certificates have been digitised for all Dutch provinces, but not for all

municipalities (figure 1, top left panel). Compared to the Historical Database
DutchMunicipalities, death certificates are digitised for 85 per cent of the 1,117
municipalities existing in 1918, accounting for an estimated 80.5 per cent of the
totalDutch population at the time.A large part of themissing death certificates
are from the city of Amsterdam, where historical death certificates have not
been digitised.

Some certificates were entered by more than one archive, or were digitised
multiple times by the same archive, resulting in duplicates. Duplicates have
been removed from the data. 3. Certificates were digitised on a per-archive ba-
sis, and therefore there is small variation in what information from the cer-
tificates was digitised (figure 1). We exclude municipalities where the share of
reported ages, sex, and precise dates is below 50%.4 In the case of occupations,
missing information often reflects the certificates as many people did not have
an occupation, especially in the case of children, the elderly, and women, and
thus we exclude municipalities where the share of recorded occupations is be-
low 10%.

The changes in the sample due to dropping municipalities are shown in
table ??, showing that it leaves us with 215 511 certificates for 224 municipal-
ities, mostly from the provinces of Gelderland, Overijssel, Zeeland, Drenthe,
and Zuid-Holland. The most important bias introduced this way is that the
three largest cities (Amsterdam, Rotterdam, andUtrecht) aremissing from the
dataset.While our data does contain cities, of cities, including a number of tex-
tile and industrial centres, this does mean that our data has a more rural focus
than data for the country as a whole.

Table ?? also shows the results of further selection steps, and how each step
affects the composition of the included sample. The most important changes
occur when we drop certificates without a registered occupation and other
missing variables, which strongly changes the sex composition of the sample.
Occupations were rarely registered for women, and hence our final data set
describes a largely male population.

3Duplicates were identified by checking for certificates with an identical death date and
location, and dropping certificates with similar full names within these clusters (using string
distances from Loo (2014)). Although some remaining duplicates cannot be excluded, our ear-
lier findings demonstrate that any over- or underestimation of deaths is stable over time at the
municipal level, and should not affect our results (Mourits et al. 2021)

4When sex was not digitised, we inferred this from the first names, using predictions from
the names on certificates that did have a reported sex, resulting in low rates of missingness for
all municipalities.
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Figure 1: Maps of coverage of certificates dates, age, sex, and occupations on
death certificates, and excess mortality rate.
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Table 1: Summary statistics and selection steps.

selection certificates municipalities age % male % unskilled % contact
start 741758 1116 43 52 32 27
certificate coverage 715703 946 43 52 33 27
variable coverage 220795 215 42 52 30 26
drop 1914 198557 215 42 52 30 26
Sep-Dec 64365 215 41 51 31 27
11 < age < 79 35077 215 53 51 32 27
drop missing 12625 215 50 91 32 27

3.2 Occupational coding
Standardised occupations of the deceased were matched against standardised
occupational titles from theHistorical Sample of theNetherlands (HSN) (Man-
demakers et al. 2020). This dataset contains over 280 000 Dutch occupational
titles, with numerous spelling variations, coded in HISCO (Historical Classi-
fication of Occupations) and HISCLASS (Historical International Social Class
Scheme) (Van Leeuwen and Maas 2011; Van Leeuwen, Maas, and Miles 2002).
Almost 98 per cent of occupational titles on the death certificates could be
coded this way.5 To infer the skill level of each occupation, we used the skill
category of its corresponding HISCLASS, ranging from high (HISCLASS 1-
2), medium (HISCLASS 3-4, 6-8), low (HISCLASS 5, 9-10), to unskilled (HIS-
CLASS 11-13).

As an alternative to the HISCLASS system, we also use HISCAM occu-
pational status scores as a robustness check (Lambert et al. 2013). This is a
non-categorical measure that infers occupational status by estimating the ”so-
cial interaction distance” from historical marriage behaviour. The advantage
of HISCAM is that it measures how a myriad of implicit social factors affects
social stratification, making it a worthwhile addition to the HISCLASS skill
dimension. HISCAM also provides a useful alternative coding of farmers. In
the HISCLASS skill scheme, farmers are coded as medium skilled workers,
while HISCAM views them as a relatively low status profession. Both argu-
ments make sense insofar farmers had to run a complicated business, but the
certificates we rely on do not always distinguish between the operators of large
farms, smallholders and farm labourers.6 Since a large share of our observa-

5Some minor adjustments to the HSN-HISCO scheme were made. See https://github.
com/rijpma/spanish

6The Dutch term landbouwer which is frequently used on the certificates is not specific
enough to make this distinction.
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tions come from the more rural east of the country, and because these areas
are also where the pandemic struck hardest (see figure 1), the measurement of
farmers could affect our analyses.

Occupational working conditions were coded on two dimensions: 1) work-
ing in an indoor environment (yes/no), and 2) regular social interaction (yes/no).
Coding was done at the three-digit HISCO level. For example, an office clerk
was considered to be working indoors, but had infrequent social contact, espe-
cially strangers. A tailor also worked under a roof but would have had frequent
social contact through dealings with customers. Conversely, a farm worker
worked neither indoors, nor in close contact with others. Occupations were
independently coded by two or more researchers and then compared. Approx-
imately 75 per cent of occupations were coded identically in the first round.
Remaining occupationswere discussed by the coders until an unanimous deci-
sion was reached. Although our scoring omits regional and within-occupation
variance, it captures conditions for exposure to and transmission of the virus
on the work floor. 7

3.3 Excess mortality
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Figure 2: Weekly number of deaths by age and sex in the Netherlands from
death certificates , 1917–1919

As death certificates in the Netherlands do not include a cause of death, we
work with all-cause mortality. We use excess mortality as our outcome vari-
able: the number of deaths in excess of what would be expected based on pre-
vious years. This approach is used as the 1918 municipal population at risk (by
age, sex, and occupation) is not available. We calculate excess mortality rates
(EMRs) for 1918, comparing the number of deaths between September 1st to

7Appendix C provides our coding of the most frequent occupations in the dataset.
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December 31st in 1918 per age group, sex, municipality, and occupational clus-
ter to mortality in the preceding years. Baseline mortality was established by
calculating the average mortality of the same occupational groups (by sex and
age) in autumn 1910-1917 (September throughDecember). The Netherlands re-
mained neutral during the First World War, so that dramatic changes to the
population at risk and mortality rates that characterised many other countries
at the time were lacking (Colvin andMcLaughlin 2021). The exception was the
year 1914, when theNetherlands briefly took in 1million Belgian refugees, who
largely returned before the end of the calendar year.We excluded 1914 from the
baseline to ascertain that our estimates of excess mortality are not biased by
the events of the First World War in the Netherlands.
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Figure 3: Log annual deaths in September-December, 1910–1918, by occupa-
tional skill level (left panel), exposure (middle panel), and age group (right
panel)

Our approach relies on assumption that the population at risk is relatively
stable in the period leading up to the Spanish Flu. Figure 2 shows that relative
to the huge mortality spike of the Spanish Flu, weekly death number were
stable in the 2.5 years preceding the pandemic, especially in the age categories
that we are interested in. Moreover, figure 3 shows that the annual number of
deaths for themain subgroups of interest, in the selection of the data described
above, were also stable over the 1910-17 period. In table 2, we calculate excess
mortality rates, which confirm in more detail the picture shown in figure 3.

We can also use external demographic datasets to investigate the possibil-
ity of strong demographic shifts in the Netherlands in the 1910–17 period. The
Historical Database Dutch Municipalities shows that across 1,225 municipali-
ties, the coefficient of variation in population was on average only 0.04 (Boon-
stra 2020). Using total Dutch population figures from the Human Mortality
Database, it is shown that the coefficient of variation in 10-year age groups av-
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Table 2: Excess mortality rates in September-December 1918 by occupational
skill group, with bootstrapped standard errors.

group EMR sd difference sd_diff
higher_skilled 2.29 0.32 - -
medium_skilled 3.02 0.08 0.73 0.33
lower_skilled 3.35 0.17 0.33 0.19
unskilled 3.90 0.12 0.55 0.21

eraged to, again, 0.04 (HumanMortality Database). While the total Dutch pop-
ulation in this period grew 1.5 % per year, implying growth in the subgroups,
year-to-year shifts in mortality are small compared to the events of 1918.

3.4 Analysis
Mortality differences for between 1918 and the preceding years are modelled
using an OLS-regression with the ratio of deaths in September–December 1918
over the average number deaths in these months for the period 1910–17 as the
dependent variable. The distribution of these ratios is highly skewed, so we
take the logarithm of the dependent variable. 8

However, as we calculate excessmortality permunicipality by sex, age, and
social class, for 59% of our observations for 1918 there are no deaths, resulting in
a ratio of zero. We do not discard these data because the fact that these groups
had zero mortality during the Spanish Flu is an important fact. To include
these observations, we add one to to the dependent variable, so that zero deaths
have a value of one. This means we estimate excess mortality in location 𝑡,
month 𝑡, occupational group 𝑜, age group 𝑎, and sex 𝑠 as follows:

log
𝑑𝑒𝑎𝑡ℎ𝑠𝑦𝑒𝑎𝑟=1918𝑖𝑡𝑜𝑠𝑎

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑑𝑒𝑎𝑡ℎ𝑠𝑖𝑡𝑜𝑠𝑎
+ 1 = 𝛼+∑𝛽 𝑠𝑘𝑖𝑙𝑙𝑜+∑𝛾𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑜+𝛿 𝑓𝑎𝑟𝑚𝑒𝑟𝑜+

∑𝜁 𝑎𝑔𝑒𝑎 +∑𝜂 𝑠𝑒𝑥𝑠 + 𝜈𝑙 + 𝜉𝑡 + 𝜖𝑖𝑡𝑜𝑠𝑎 (1)

Standard errors are clustered by location (Zeileis, Köll, and Graham 2020).
For locations we use Economic Geographic Regions (EGG): clusters of munic-
ipalities defined by Statistics Netherlands below the NUTS-39 level. We pre-

8This ratio differs by a value of one from the excess mortality rate, which is calculated as
the ratio of excess deaths minus expected deaths in the numerator. We do not use this statistic
to avoid negative values.

9Nomenclature of Territorial Units for Statistics. See:
https://ec.europa.eu/eurostat/web/nuts/background
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fer to work at this relatively low level of aggregation to be able to control for
the spatial patterns of the pandemic as well as the differences between urban
and rural regions which the EGG regions capture, but NUTS-3 region in the
Netherlands do not.10

To verify the validity of our outcomes, we conduct a number of robustness
checks. First, we explore whether the level of geographic aggregation affects
our results. Larger geographic areas mean that we have relatively fewer cases
of zero deaths for 1918, and, more generally, will reduce variance in our data,
albeit at the expense of a lower number of observations. In addition to the
EGG level, we also estimate ourmodels formunicipalities, COROP11 (NUTS-3)
regions, and provinces (NUTS-2). For similar reasons we also provide separate
estimates for high and low mortality regions. This allows us to focus on the
regions most affected by the Spanish Influenza pandemic , and again, exclude
many cases of zero deaths. The cutoff was an overall excess mortality 2.5 times
the mortality we would usually expect in September-December. In addition,
we also look at a variety of alternative types of models to deal with the zeroes
in our data. We also check whether population density affect our estimates
due to easier transmissibility in cities compared to the countryside, Finally,
we ascertain whether the 1914-1918 mobilisation of troops does not affect our
results by controlling for the presence of army bases.

4 Results
Table 3 shows the results of this model, progressively adding more controls to
come to our preferred model in the rightmost column. For each estimate we
report the coefficient, standard error, and significance level.

In the most basic model, it can be seen that there is a skill gradient in the
excess mortality rates of 1918. Compared to higher-skilled workers, medium
skilled workers workers had 48 percent higher mortality than they would nor-
mally experience (exp(0.39) − 1). For unskilled workers this was higher still:
their excess mortality was 63 percent higher than that of higher skilled work-
ers. Lower skilled workers also had substantially higher excess mortality than
higher-skilled workers, but lower than unskilled workers and medium-skilled
workers. An important driver of this break in the skill gradient are farmers.
They are a large group in our dataset with relatively high mortality who are
classified as medium-skilled in the HISCLASS scheme.We return to this point

10An example of our dataset can be found in appendix A.
11Artificial regions defined for statistical analyses by Statistics Netherlands, named after the

COördinatie commissie Regionaal OnderzoeksProgramma
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
medium skilled 0.39∗∗∗ 0.31∗∗∗ 0.30∗∗∗ 0.31∗∗∗ 0.32∗∗ 0.39∗∗∗

(0.09) (0.08) (0.09) (0.09) (0.10) (0.09)
lower skilled 0.21∗∗∗ 0.21∗∗∗ 0.19∗∗ 0.18∗ 0.19∗ 0.21∗∗

(0.05) (0.05) (0.07) (0.08) (0.08) (0.08)
unskilled 0.49∗∗∗ 0.49∗∗∗ 0.48∗∗∗ 0.49∗∗∗ 0.49∗∗∗ 0.56∗∗∗

(0.11) (0.11) (0.14) (0.14) (0.15) (0.12)
farmer 0.27∗∗∗ 0.31∗∗∗ 0.40∗∗∗ 0.48∗∗∗ 0.46∗∗∗ 0.45∗∗∗

(0.07) (0.08) (0.11) (0.11) (0.11) (0.09)
indoors only 0.01 0.16 0.17 0.17∗ 0.13

(0.06) (0.08) (0.09) (0.09) (0.08)
contact only 0.21∗∗ 0.22∗∗ 0.22∗∗ 0.21∗∗ 0.18∗∗

(0.07) (0.07) (0.07) (0.07) (0.06)
both 0.02 0.11 0.16∗ 0.15 0.12

(0.06) (0.07) (0.08) (0.08) (0.07)
age (30,45] −0.24∗∗∗ −0.24∗∗∗ −0.25∗∗∗

(0.05) (0.05) (0.05)
age (45,60] −0.45∗∗∗ −0.44∗∗∗ −0.43∗∗∗

(0.05) (0.05) (0.05)
age (60,80] −0.49∗∗∗ −0.50∗∗∗ −0.47∗∗∗

(0.06) (0.06) (0.06)
male 0.32∗∗∗ 0.30∗∗∗ 0.37∗∗∗

(0.06) (0.06) (0.06)
event_month10 0.38∗∗∗ 0.39∗∗∗

(0.05) (0.05)
event_month11 0.77∗∗∗ 0.78∗∗∗

(0.06) (0.06)
event_month12 0.25∗∗∗ 0.27∗∗∗

(0.04) (0.04)
(Intercept) 0.26∗∗ 0.26∗∗ 0.53∗∗∗ 0.14 0.16 −0.18 −0.79∗∗∗

(0.09) (0.09) (0.06) (0.14) (0.20) (0.20) (0.19)
Region FE No No No No No No Yes
R2 0.02 0.02 0.01 0.03 0.08 0.16 0.23
Adj. R2 0.02 0.02 0.01 0.03 0.07 0.15 0.22
Num. obs. 3701 3701 3700 3699 3573 3573 3573
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 3: Regression models of log excess mortality rate. Region-clustered stan-
dard errors between parentheses.
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in more detail below. Here we observe that if we separately control for farm-
ers (model 2 onwards), the skill gradient is still not strictly a perfect gradient,
but closer to it, with medium and lower skilled workers having similar higher
excess mortality compared to higher skilled workers, and unskilled workers
having the highest excess mortality.

Next, we introduce our occupational exposure variables (model 3). Here,
we find that they generally predict higher mortality, specifically, about 20 per-
cent higher in the case of contact occupations compared with occupations
that had neither of the exposure characteristics. The other occupational ex-
posure variable, indoor work, is also related to higher excess mortality, but
not estimated with sufficient precision to draw firm conclusions. Here again
we include the ”farmer” control, as this large group has high excess mortality,
but we scored it neither as being indoors nor involving frequent contact with
strangers. Of particular interest is what happens to the skill gradient when we
introduce these exposure variables (model 4). We find that while controlling
for exposure, the skill gradient in excess mortality remains largely unchanged,
although the mortality estimate for farmers increases. Overall, we find that
working indoors had no effect on excess mortality. However, occupational ex-
posure to infectious disease due to frequent contact predicts somewhat higher
excess mortality, though skill remains a more important predictor.

Adding age and sex controls further increases the estimate of excess mor-
tality among farmers, but otherwise does not change this picture. This is im-
portant because we know that Spanish influenza affected younger men in par-
ticular, andwe can expect them to have lower-skilled occupations due to career
effects. Indeed, keeping all else constant, we find the highest excess mortality
for age groups 12-30 (reference category), with progressively lower mortality
going up in age group. Adding month indicators to capture the phase of the
epidemic also leaves the estimates for skill level largely unchanged. We finally
add region fixed effects to adjust for the fact that some regions were struck
harder than others (the rural, poorer North-East in particular, see Mourits et
al. 2021). This somewhat strengthens the skill gradient. In our preferredmodel,
including the full set of demographic controls and region and time fixed effects
medium skilled workers have 47 percent higher excess mortality compared to
high skilled workers; lower skilled workers 23 percent and unskilled workers
have 75 percent higher excess mortality. The predicted excess mortality due to
the exposure characteristics of the occupations of the deceased is around 18
percent for contact occupations compared to the baseline of occupations char-
acterised by neither exposure risk.
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4.1 Alternative occupational coding and farmers
To investigate whether our results are sensitive to the choices in occupational
coding schemes, we test a number of alternative models (table 4). In column
2, the preferred model from table 3 is estimated again, but for a dataset where
excess mortality was calculated with farmers dropped from the dataset. In the
next column, as another alternative, we recode farmers as lower skilled.

We find that omitting farmers from our dataset makes only a limited im-
pact on the social gradient. Recoding farmers as lower skilled does make a dif-
ference. The N-shaped gradient, where, compared to higher skilled workers,
lower skilled workers had lower excess mortality than medium skilled work-
ers, disappears, and now medium and lower skilled workers have similar ex-
cess mortality. In this model, our exposure variables give the counter-intuitive
result that working indoors predicts lower excess mortality. Most likely, be-
cause lower-skilled labourers who worked indoors still had lower excess mor-
tality than farmers.

We also estimate our preferredmodel with HISCAM scores instead of HIS-
CLASS. Again, the model based on HISCAM shows that, keeping all else con-
stant, higher occupational status predicts lower excess mortality. A one point
increase in HISCAM would result in a halving of excess mortality; since the
HISCAM scores in our data range from 0.40–0.99, going from the lowest to
the highest status occupation is associated with an decrease in excess mortal-
ity of 44%. The fact that HISCAM is a continuous variable also allows us to
assess non-linear effects of socioeconomic status on Spanish Flu excess mor-
tality using non-parametric techniques (regression splines Wood 2003). The
results are shown in figure 4, where it can be seen that the higher excess mor-
tality is concentrated in the lower status occupations. At a HISCAM score of c.
0.55 or higher (covering 23% of all deaths in our dataset, and 30% of all aggre-
gated cells) and keeping all other variables equal, predicted excess mortality is
negative.

4.2 Robustness checks
4.2.1 High and lowmortality regions

To verify the validity of our outcomes, we included a number of robustness
checks in the appendix. Table 6 in appendix B.1 compares how our preferred
model performs in regions with relatively low or high overall mortality. The
cutoff was an overall excess mortality rate of 2.5, that is 2.5 times the mortality
we would usually expect in September-December. As expected, we find that
most estimates in the highmortality areas are higher compared to lowmortal-
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all occupations no farmers farmers recoded hiscam
medium skilled 0.39∗∗∗ 0.39∗∗∗ 0.36∗∗∗

(0.09) (0.09) (0.09)
lower skilled 0.21∗∗ 0.21∗∗ 0.36∗∗∗

(0.08) (0.08) (0.09)
unskilled 0.56∗∗∗ 0.55∗∗∗ 0.45∗∗∗

(0.12) (0.12) (0.11)
farmer 0.45∗∗∗ 0.52∗∗∗

(0.09) (0.08)
hiscam −0.65∗∗∗

(0.14)
indoors only 0.13 0.13 −0.23∗∗∗ −0.13∗

(0.08) (0.08) (0.05) (0.06)
contact only 0.18∗∗ 0.19∗∗ −0.09 0.17∗∗

(0.06) (0.06) (0.06) (0.06)
both 0.12 0.11 −0.17∗∗∗ −0.03

(0.07) (0.07) (0.05) (0.06)
age (30,45] −0.25∗∗∗ −0.25∗∗∗ −0.26∗∗∗ −0.18∗∗∗

(0.05) (0.06) (0.05) (0.03)
age (45,60] −0.43∗∗∗ −0.41∗∗∗ −0.42∗∗∗ −0.29∗∗∗

(0.05) (0.06) (0.05) (0.04)
age (60,80] −0.47∗∗∗ −0.45∗∗∗ −0.47∗∗∗ −0.32∗∗∗

(0.06) (0.06) (0.06) (0.05)
male 0.37∗∗∗ 0.32∗∗∗ 0.33∗∗∗ 0.10

(0.06) (0.06) (0.06) (0.05)
event_month10 0.39∗∗∗ 0.38∗∗∗ 0.40∗∗∗ 0.22∗∗∗

(0.05) (0.05) (0.05) (0.04)
event_month11 0.78∗∗∗ 0.73∗∗∗ 0.79∗∗∗ 0.49∗∗∗

(0.06) (0.06) (0.06) (0.05)
event_month12 0.27∗∗∗ 0.24∗∗∗ 0.27∗∗∗ 0.15∗∗∗

(0.04) (0.04) (0.04) (0.03)
(Intercept) −0.79∗∗∗ −0.52∗∗ −0.37∗∗ 0.25∗

(0.19) (0.17) (0.14) (0.10)
R2 0.23 0.22 0.22 0.17
Adj. R2 0.22 0.20 0.20 0.16
Num. obs. 3573 3097 3522 4702
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 4: Regression models of log excess mortality rate, exluding selected oc-
cupations. Region-clustered standard errors between parentheses.
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Figure 4: Partial effect of HISCAM on excess mortality

ity areas. But otherwise, the results are similar.

4.2.2 Aggregation level

Whilewe prefer towork at a relatively low level of aggregation, a concern could
be that this does result in cells in our dataset with few observations, either
for our 1910–17 baseline, or for the Spanish Influenza pandemic deaths. To in-
vestigate this, in table 7 we also estimate the preferred model from table 3 at
different levels of geographic aggregation: municipalities, EGG regions, Corop
(NUTS-3) regions, and provinces (NUTS-2). Overall, the results are similar to
the preferredEGGaggregation, though overall effect sizes tend to be somewhat
larger at higher levels of aggregation. The one exception is the skill-gradient at
the province level (column 4) where excess mortality for unskilled workers is
estimated to be lower than at the EGG or Corop level.

4.2.3 Population density and army controls

Important factors in the spread of any infectious disease are population density
and geographic mobility, as these make it easier for the disease to move from
one person to the next.While the inclusion of region fixed effects in ourmodels
should capture any time invariant impact of these factors, we explore this pos-
sibility further in table 8, appendix B.3, where we show the effect of including
population density and the presence of army bases or hospitals in amunicipal-
ity. Because these variables are measured at the municipality level, we have to
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aggregate our data to this level as well. As expected, the overall skill-gradient
is the same as these effects would also be captured by the location fixed effects
included in the models in table 7. The effect of the population variable itself is
positive, as expected. However, population density does not have a significant
effect on excess mortality, even if we exclude population size from our model.

We also include a control formunicipalmilitary bases in part of ourmodels
for more reliable estimates of excess mortality. Although the Netherlands re-
mained neutral during World War I, the Dutch army was mobilised from 1914
to the end of 1918. Living conditions in the barracks and other army camps
were poor (Koten and Weel 2014), and young adult men were affected by the
Spanish Flu in large numbers. Asmany soldiers were conscripts, their occupa-
tion listed at death would not be ’soldier’, but their occupation before the War.
Only 0.2% of the death certificates have occupational titles that can be linked
to the military between 1910 and 1918, which is surely an underestimation for
this period. To control for this potential heavy increase in local excessmortality
around military bases, we added a dummy variable to indicate whether divi-
sions of the Dutch army were present in 1918 at the places of death recorded in
the certificates. These locations were obtained from combining place names of
military bases in 1918 listed in Ringoir (1980) with the locations where Dutch
soldiers were admitted to military hospitals in 1913, listed in annual reports
(Landmacht 1913). We selected military hospitals for 1913, because no military
hospital reports are available between 1914 and 1918, and the recording proce-
dure changed after the War.

Army bases have little predictive value, which is surprising. It should be
mentioned, however, that one of the most important military bases in the
Netherlands, the main navy base in Den Helder, had some of the highest ex-
cessmortality in the country (figure 1), but had to be excluded from our dataset
because the occupations for these certificates were not digitised.

4.2.4 Alternative model specifications

As a final check of our results, we investigate whether the way we handle the
cases of zero deaths during the Spanish Influenza in our model affects our re-
sults. The following approaches are tried here: dropping cases of zero deaths
(column 2), not taking the logarithm of the dependent variable (column 3),
a quasipoisson model with the ratio of 1918 to baseline deaths as the depen-
dent variable (Silva and Tenreyro 2006, column 4), a quasipoissonmodel of the
number of deaths during the Spanish Influenza pandemic with the log base-
line deaths as the offset (column 5), and taking the inverse hyperbolic sine
of the ratio (Bellemare and Wichman 2020; Burbidge, Magee, and Robb 1988,
column 6).Appendix B.4, table 9 shows that the basic gradient we find in our
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preferred specification is found in other model forms as well. The main excep-
tion here is the model where we drop all the groups with zero deaths during
the Spanish Influenza pandemic , in which the patterns we find elsewhere are
reversed. Asmentioned earlier, absence of Spanish Influenza pandemic deaths
is a relevant outcome that should be included in the model. The precision of
our estimates is also lower in the two quasipoisson models. Beyond that, what
stands out is that the alternative models provide higher estimates of the same
pattern.

5 Conclusion
We explored whether there were occupation- and class-related differentials
in excess mortality during the Spanish Flu in the Netherlands. Using data
from the civil registry, we found that higher social classes had lower mortal-
ity. Excess mortality was highest among farmers and unskilled labourers, low-
est among higher-skilled labourers, with excess mortality for medium-skilled
and lower-skilled workers in between. These findings are in line with evidence
from recent studies on Norway and Sweden (Bengtsson, Dribe, and Eriksson
2018; Mamelund 2006), and strongly contrast with the perceptions of contem-
poraries that the Spanish flu had a relatively egalitarian impact across the so-
ciety (Mamelund 2006; Quanjer 1921).

We used information from the Dutch civil registry to measure mortality
to any cause, rather than disease-specific excess mortality. Death registrations
are deemedmuchmore accurate for epidemics, as all-causemortality rates are
not affected by wrong or missing diagnoses of the cause of death, includes in-
dividuals who had multiple diseases at the time of death, and includes those
who died indirectly from the Spanish Flu (Colvin and McLaughlin 2021). The
national death registers included individual information on the age, occupa-
tion, and date of death as well as sex and the municipality of residence of the
deceased. Because we do not know the population at risk, we could not esti-
mate survival models. However, our robustness checks showed that the data
from the Dutch civil registry allows for very robust excess mortality estimates.
This makes it possible to estimate the association between social class and ex-
cessmortality, while also taking occupational characteristics, age, and regional
variance in mortality into account (Colvin and McLaughlin 2021; Mamelund
2011). Moreover, by estimating excess mortality rates we explore whether the
Spanish flu increased existing inequalities in mortality in the working popu-
lation (Van Poppel, Jennissen, and Mandemakers 2009).

In the 1910s, there was a clear social gradient in the mortality rates of the
working population. Age, sex, month of infection, and regional differences

22



were the most important predictors of Spanish flu mortality. Yet, the associ-
ation between socioeconomic status and excess mortality rates was not ex-
plained by sex, age or month of death. Moreover, controlling for municipal-
ity size and presence of local army bases, including regional fixed effects, or
analyzing specific regions with high excess mortality resulted in higher esti-
mates of the magnitude of social class differences in excess mortality during
the Spanish flu. In other words, there was a clear social disparity in excess
mortality during the autumn wave of the 1918-19 influenza pandemic. These
estimates come on top of the existing social gradient in mortality among indi-
viduals age 35-55 in the Netherlands (Van Poppel, Jennissen, and Mandemak-
ers 2009), indicating that the Spanish Flu increased existing social inequalities
in mortality.

We set out to explore whether the social differences in Spanish Flu mor-
tality could have been caused by occupational characteristics, including social
interaction at the workplace and indoor work. We expected that working to-
gether with others in an enclosed space or regular social interaction at the
workplace might be related to increased chances of infection and death with
the Spanish Flu in autumn 1918. To test this hypothesis, a contact index was
constructed. The teamdiscussed each instancewhere therewere differences in
coding after two separatemembers coded occupations. After two rounds of dis-
cussion, all occupations were coded. We found evidence that social contact at
the workplace, as indicated by this occupation-based measurement we devel-
oped, was related to increased Spanish flu mortality. However, contrary to our
expectations, it did not seem to matter whether individuals worked together
indoors or not, as we found similar excess mortality estimates for working in-
doors, having frequent interactions, and the combination of the two. In unison
with our findings for social class, the estimates of our contact index were ro-
bust after we controlled for municipality size, local army bases, regional fixed
effects, or specifically looked at regions with high excess mortality. Thus, our
characterisation of historical occupations in the extent to which individuals
worked indoors or social interaction could not explain socioeconomic differ-
ences in Spanish flu-related excess mortality, even though contact with people
at the workplace, either indoors or frequently outside, increased Spanish Flu
mortality.

The increasing social inequalities during the Spanish flu pandemic on top
of existing socio-economic differences in mortality are most likely related to
the same underlying fundamental causes. Combined, HISCLASS and our con-
tact index measure the importance of income and exposure. The statistically
robust and clear mortality gradient ranged from high mortality for unskilled
labourers to medium- and lower-skilled labourers with more average mortal-
ity rates, and finally the elite with the lowest mortality. This finding indicates
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that the higher social strata were, to some degree, able to protect themselves
against the Spanish flu. It is tempting to think that we are looking at income
effects, as educational divides in mortality were uncommon before the second
half of the 20th century. Indeed, earlier studies have shown that Spanish flu
mortality decreases with each additional room in a house (Mamelund 2006)
and that povertywas related to increased Spanish flumortality across the globe
(Murray et al. 2006). In the 1918Netherlands, lower-skilled andmedium-skilled
labourers were by no means rich, but they could afford significantly better
housing and food than unskilled labourers (Brooshooft 1897; Van Der Woud
2010). However, material resources are unlikely to fully explain the complex
and multifaceted advantages that social status provides, as non-material re-
sources - such as existing health conditions, occupational hazards, knowledge
about infectious diseases, and access to health care - have been at least equally
important in explaining survival differentials in other social contexts (Clous-
ton et al. 2016; Debiasi 2020; Edvinsson and Broström 2012; Elo 2009; Link and
Phelan 1995).

An unexpected finding is the high excess mortality rates of farmers. At the
turn of the 20th century, farmers were known to outlive their peers in many
populations (Ferrie 2003; Gagnon et al. 2011; Mourits 2019; Schenk and Van
Poppel 2011; Smith et al. 2009; Temby and Smith 2014; Van Poppel, Jennissen,
and Mandemakers 2009). Yet, our findings indicate that farmers had one of
the highest excess mortality risks around the Spanish Flu, especially after we
control for expects of social contact and age composition. This finding contra-
dicts an earlier study for Sweden (Bengtsson, Dribe, and Eriksson 2018). This
is probably because excess mortality rates were especially high in Drenthe and
parts of Groningen and Overijssel, rural and poor regions where many people
were involved in farming. Contemporaries noted that the poverty in this region
might have elevated mortality. Previous to and after the pandemic, farmers of-
ten had a survival advantage despite their poverty, as they continued to be
physically active at advanced ages and had access to fresh food in a time when
refrigeration was not commonplace. However, most studies have found no ev-
idence of a farmer bonus between ages 20 and 40, which was the age group hit
hardest by the Spanish flu. It could very well be that poverty protected farm-
ers from man-made diseases caused by idleness and unhealthy eating habits,
enabling them to live to old age, but made them vulnerable to outbreaks of
infectious disease, as houses were small and the rural population as a whole
was malnourished.

Taken together, our results show that the Spanishfludid not hit the popula-
tion evenly. We find that higher social classes experienced lower excess mor-
tality rates, and these differences were not explained by occupation-specific
risk factors included in this work. Working indoors or frequent social con-
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tact at the workplace was related to increased Spanish flu mortality, but did
not drive social class differentials, and high risk jobs existed across the social
spectrum. Overall, the social factors that put populations at higher risk during
the pandemic may also have been found in factors that determined existing
health differences across the population, exacerbating existing social gradients
in mortality.
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Table 5: Example excess mortality dataset

EGG indoor strangers sex month agegroup baseline flu emr
71 1 1 m 10 50 0.14 0 0.0
97 0 1 m 11 50 0.29 0 0.0
27 0 0 m 12 60 0.14 0 0.0
38 0 1 m 12 60 0.57 2 3.5
30 0 1 m 12 30 0.14 1 7.0

A Data example
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B Robustness checks
B.1 High and lowmortality regions
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all low EM high EM
medium skilled 0.39∗∗∗ 0.35∗∗∗ 0.45∗∗

(0.09) (0.08) (0.14)
lower skilled 0.21∗∗ 0.20∗∗ 0.23

(0.08) (0.07) (0.13)
unskilled 0.56∗∗∗ 0.38∗ 0.73∗∗∗

(0.12) (0.15) (0.16)
farmer 0.45∗∗∗ 0.42∗∗ 0.49∗∗∗

(0.09) (0.16) (0.11)
indoors only 0.13 0.18 0.10

(0.08) (0.11) (0.12)
contact only 0.18∗∗ 0.18 0.19∗

(0.06) (0.09) (0.09)
both 0.12 0.16 0.09

(0.07) (0.09) (0.11)
age (30,45] −0.25∗∗∗ −0.23∗∗ −0.25∗∗∗

(0.05) (0.07) (0.07)
age (45,60] −0.43∗∗∗ −0.36∗∗∗ −0.49∗∗∗

(0.05) (0.08) (0.07)
age (60,80] −0.47∗∗∗ −0.34∗∗∗ −0.57∗∗∗

(0.06) (0.09) (0.08)
male 0.37∗∗∗ 0.31∗∗∗ 0.44∗∗∗

(0.06) (0.06) (0.08)
event_month10 0.39∗∗∗ 0.29∗∗∗ 0.47∗∗∗

(0.05) (0.07) (0.06)
event_month11 0.78∗∗∗ 0.67∗∗∗ 0.88∗∗∗

(0.06) (0.08) (0.08)
event_month12 0.27∗∗∗ 0.29∗∗∗ 0.25∗∗∗

(0.04) (0.05) (0.06)
(Intercept) −0.79∗∗∗ −0.20 −0.91∗∗∗

(0.19) (0.24) (0.22)
R2 0.23 0.20 0.26
Adj. R2 0.22 0.19 0.24
Num. obs. 3573 1659 1914
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 6: Regression models of log excess mortality rate for low and high excess
mortality regions. Region-clustered standard errors between parentheses.
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B.2 Different aggregation levels
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municipalities EGG COROP Province
medium skilled 0.23∗∗∗ 0.39∗∗∗ 0.55∗∗∗ 0.42∗∗∗

(0.05) (0.09) (0.12) (0.10)
lower skilled 0.15∗∗∗ 0.21∗∗ 0.32∗∗ 0.24∗

(0.04) (0.08) (0.10) (0.12)
unskilled 0.34∗∗∗ 0.56∗∗∗ 0.62∗∗∗ 0.47∗∗

(0.07) (0.12) (0.16) (0.16)
farmer 0.44∗∗∗ 0.45∗∗∗ 0.36∗∗ 0.23

(0.07) (0.09) (0.12) (0.13)
indoors only 0.14∗ 0.13 0.17 0.04

(0.06) (0.08) (0.10) (0.09)
contact only 0.16∗∗∗ 0.18∗∗ 0.17 0.06

(0.05) (0.06) (0.09) (0.12)
both 0.10∗ 0.12 0.14 0.11

(0.05) (0.07) (0.10) (0.09)
age (30,45] −0.16∗∗∗ −0.25∗∗∗ −0.24∗∗∗ −0.27∗∗∗

(0.05) (0.05) (0.05) (0.06)
age (45,60] −0.26∗∗∗ −0.43∗∗∗ −0.56∗∗∗ −0.67∗∗∗

(0.04) (0.05) (0.04) (0.05)
age (60,80] −0.24∗∗∗ −0.47∗∗∗ −0.65∗∗∗ −0.77∗∗∗

(0.05) (0.06) (0.06) (0.07)
male 0.22∗∗∗ 0.37∗∗∗ 0.48∗∗∗ 0.29∗∗∗

(0.04) (0.06) (0.07) (0.05)
event_month10 0.24∗∗∗ 0.39∗∗∗ 0.47∗∗∗ 0.52∗∗∗

(0.03) (0.05) (0.07) (0.08)
event_month11 0.51∗∗∗ 0.78∗∗∗ 0.95∗∗∗ 1.02∗∗∗

(0.05) (0.06) (0.09) (0.12)
event_month12 0.16∗∗∗ 0.27∗∗∗ 0.31∗∗∗ 0.35∗∗∗

(0.03) (0.04) (0.06) (0.10)
(Intercept) −0.55∗∗∗ −0.79∗∗∗ −0.33 0.37∗∗

(0.11) (0.19) (0.21) (0.14)
R2 0.19 0.23 0.26 0.29
Adj. R2 0.16 0.22 0.25 0.28
Num. obs. 5169 3573 2385 1261
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 7: Regression models of log excess mortality rate at different levels of
aggregation. Region-clustered standard errors between parentheses.

35



B.3 Population density and army controls
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municipalities *EGG* COROP Province
medium skilled 0.22∗∗∗ 0.38∗∗∗ 0.52∗∗∗ 0.37∗∗

(0.05) (0.09) (0.13) (0.12)
lower skilled 0.13∗∗ 0.19∗ 0.32∗∗ 0.22

(0.04) (0.08) (0.11) (0.12)
unskilled 0.34∗∗∗ 0.55∗∗∗ 0.59∗∗∗ 0.44∗∗

(0.07) (0.13) (0.17) (0.16)
farmer 0.45∗∗∗ 0.48∗∗∗ 0.36∗∗ 0.26∗

(0.06) (0.09) (0.13) (0.11)
indoors only 0.12∗ 0.14 0.17 0.05

(0.06) (0.08) (0.10) (0.09)
contact only 0.16∗∗∗ 0.20∗∗ 0.17 0.07

(0.05) (0.07) (0.09) (0.10)
both 0.08 0.12 0.14 0.12

(0.05) (0.08) (0.10) (0.09)
age (30,45] −0.16∗∗∗ −0.25∗∗∗ −0.24∗∗∗ −0.26∗∗∗

(0.04) (0.05) (0.05) (0.06)
age (45,60] −0.26∗∗∗ −0.44∗∗∗ −0.58∗∗∗ −0.66∗∗∗

(0.04) (0.05) (0.04) (0.05)
age (60,80] −0.25∗∗∗ −0.48∗∗∗ −0.68∗∗∗ −0.79∗∗∗

(0.05) (0.06) (0.06) (0.06)
male 0.18∗∗∗ 0.33∗∗∗ 0.45∗∗∗ 0.29∗∗∗

(0.05) (0.06) (0.08) (0.05)
event_month10 0.24∗∗∗ 0.39∗∗∗ 0.47∗∗∗ 0.51∗∗∗

(0.03) (0.05) (0.07) (0.09)
event_month11 0.50∗∗∗ 0.77∗∗∗ 0.94∗∗∗ 1.01∗∗∗

(0.04) (0.06) (0.09) (0.12)
event_month12 0.16∗∗∗ 0.26∗∗∗ 0.31∗∗∗ 0.35∗∗∗

(0.03) (0.04) (0.06) (0.10)
log Population ’18 0.16∗∗∗ 0.23∗∗∗ 0.07 0.03

(0.02) (0.04) (0.09) (0.05)
(Intercept) −1.73∗∗∗ −2.77∗∗∗ −0.98 −0.04

(0.19) (0.55) (1.15) (0.69)
R2 0.14 0.19 0.22 0.26
Adj. R2 0.14 0.18 0.22 0.25
Num. obs. 5169 3573 2385 1261
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 8: Regression models of log excess mortality rate including population
density controls and no region FE. Region-clustered standard errors between
parentheses.
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B.4 Alternative zero handling
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log x+1 drop 0 no log poiss EMR poiss N asinh
medium skilled 0.39∗∗∗ −0.56∗∗∗ 1.18∗ 0.88∗ 0.63 0.50∗∗∗

(0.09) (0.07) (0.48) (0.39) (0.35) (0.11)
lower skilled 0.21∗∗ −0.43∗∗∗ 0.48 0.61 0.44 0.27∗∗

(0.08) (0.11) (0.48) (0.37) (0.34) (0.09)
unskilled 0.56∗∗∗ −0.71∗∗∗ 1.97∗∗ 1.19∗∗ 0.86∗ 0.72∗∗∗

(0.12) (0.09) (0.60) (0.45) (0.40) (0.15)
farmer 0.45∗∗∗ −0.49∗∗∗ 1.82∗∗∗ 0.65∗∗∗ 0.54∗∗∗ 0.57∗∗∗

(0.09) (0.10) (0.49) (0.18) (0.13) (0.12)
indoors only 0.13 −0.35∗∗ 0.24 0.13 0.17 0.17

(0.08) (0.11) (0.36) (0.18) (0.13) (0.10)
contact only 0.18∗∗ −0.24∗ 0.74 0.29∗ 0.22 0.23∗∗

(0.06) (0.11) (0.38) (0.14) (0.12) (0.08)
both 0.12 −0.37∗∗ 0.17 0.07 0.06 0.15

(0.07) (0.11) (0.39) (0.18) (0.15) (0.09)
age (30,45] −0.25∗∗∗ −0.08 −1.68∗∗∗ −0.41∗∗∗ −0.41∗∗∗ −0.31∗∗∗

(0.05) (0.04) (0.31) (0.06) (0.06) (0.06)
age (45,60] −0.43∗∗∗ −0.54∗∗∗ −3.09∗∗∗ −0.98∗∗∗ −1.06∗∗∗ −0.52∗∗∗

(0.05) (0.06) (0.45) (0.08) (0.07) (0.06)
age (60,80] −0.47∗∗∗ −0.80∗∗∗ −3.50∗∗∗ −1.23∗∗∗ −1.36∗∗∗ −0.57∗∗∗

(0.06) (0.07) (0.53) (0.10) (0.11) (0.07)
male 0.37∗∗∗ −0.27∗ 1.08 0.43 0.26 0.47∗∗∗

(0.06) (0.11) (0.70) (0.30) (0.30) (0.07)
event_month10 0.39∗∗∗ 0.36∗∗∗ 1.77∗∗∗ 1.15∗∗∗ 1.00∗∗∗ 0.49∗∗∗

(0.05) (0.09) (0.35) (0.11) (0.15) (0.06)
event_month11 0.78∗∗∗ 0.69∗∗∗ 4.52∗∗∗ 1.90∗∗∗ 1.74∗∗∗ 0.97∗∗∗

(0.06) (0.09) (0.61) (0.15) (0.18) (0.07)
event_month12 0.27∗∗∗ 0.22∗∗ 1.04∗∗∗ 0.81∗∗∗ 0.71∗∗∗ 0.34∗∗∗

(0.04) (0.07) (0.17) (0.14) (0.13) (0.05)
(Intercept) −0.79∗∗∗ 3.28∗∗∗ −1.17 −2.40∗∗∗ −1.50∗ −1.02∗∗∗

(0.19) (0.21) (1.29) (0.68) (0.61) (0.23)
R2 0.23 0.34 0.18 0.23
Adj. R2 0.22 0.31 0.17 0.22
Num. obs. 3573 1236 3573 3573 3573 3573
AIC
BIC
Log Likelihood
Deviance 17681.43 4195.89
∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05

Table 9: Alternative model forms for regressions of log excess mortality rate.
Region-clustered standard errors between parentheses.
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C Occupations
Below we tabulate the most frequent occupations in the four exposure cate-
gories.
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Table 10: Most frequent occupations on death certificates for deceased age 10-
70, september-december 1910–1918.

HISCO emr occtitle N strangers indoors both neither skill hiscam
61220 3.5 landbouwer 2596 0 0 0 2596 medium 54
99900 4.9 arbeider 2034 2034 0 0 0 un 49
99930 4.0 fabrieksarbeider 559 559 559 559 0 un 50
41025 3.4 koopman 484 484 484 484 0 medium 66
54020 5.0 dienstbode 382 382 382 382 0 un 40
62210 4.4 veldarbeider 364 0 0 0 364 un 51
95410 2.8 timmerman 364 364 0 0 0 lower 53
41030 2.3 winkelier 247 247 247 247 0 medium 63
99920 3.0 dagloner 212 212 0 0 0 un 42
79100 3.6 kleermaker 194 194 194 194 0 medium 51
93120 2.7 schilder 190 190 0 0 0 lower 55
83110 3.2 smid 170 0 170 0 0 medium 53
80110 3.1 schoenmaker 164 164 164 164 0 medium 51
95120 2.4 metselaar 151 151 0 0 0 medium 48
39310 8.9 kantoorbediende 131 0 131 0 0 lower 65
79510 2.8 naaister 130 0 130 0 0 lower 51
98620 2.9 voerman 127 127 0 0 0 lower 49
77610 5.6 bakker 116 0 116 0 0 medium 59
78200 3.2 sigarenmaker 116 0 116 0 0 lower 49
4217 4.0 schipper 106 NA NA NA NA medium 55
64100 8.7 visscher 105 0 0 0 105 medium 52
37040 2.5 loopknecht 92 92 0 0 0 lower 53
62105 6.1 boerenknecht 92 0 0 0 92 un 49
51050 1.5 cafehouder 90 90 90 90 0 medium 57
81990 3.8 klompenmaker 88 0 88 0 0 lower 47
81120 2.5 meubelmaker 87 0 87 0 0 medium 53
61270 3.1 bloemist 84 0 0 0 84 medium 61
62740 2.2 tuinman 73 0 0 0 73 un 53
45130 7.0 winkelbediende 70 70 70 70 0 lower 53
13000 5.3 onderwijzer 68 68 68 68 0 higher 81
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